New temperature jump boundary condition in high-speed rarefied gas flow simulations
نویسندگان
چکیده
منابع مشابه
The temperature-jump problem in rarefied-gas dynamics
An analytical version of the discrete-ordinates method is used here to solve the classical temperature-jump problem based on the BGK model in rarefied-gas dynamics. In addition to a complete development of the discrete-ordinates method for the application considered, the computational algorithm is implemented to yield very accurate results for the temperature jump and the complete temperature a...
متن کاملThe velocity boundary condition at solid walls in rarefied gas simulations
Maxwell’s original slip boundary condition is widely misapplied in current rarefied gas flow calculations (e.g. in hypersonics, microfluidics). If its commonly-accepted form is applied in simulations of gas flows over curved or moving surfaces, crucial physics can be lost. We give examples of such cases. We also propose a new higher-order boundary condition which is based on Maxwell’s original ...
متن کاملA Review of Recent Studies on Simulations for Flow around High-Speed Trains
Fluid flow around bluff bodies occurs in numerous fields of science and engineering, such as flows pass vehicles, cables, towers and bridges. These flows have been studied experimentally and numerically for the last several decades. The investigation of flow around high-speed trains is an important application of bluff bodies. Fluid flow, aerodynamic forces and moments, separation and wake regi...
متن کاملGas-kinetic scheme for rarefied flow simulation
For increasingly rarefied flowfields, the predictions from continuum formulation, such as the Navier–Stokes equations lose accuracy. These inaccuracies are attributed primarily to the linear approximations of the stress and heat flux terms in the Navier– Stokes equations. The inclusion of higher order terms, such as Burnett, or high-order moment equations, could improve the predictive capabilit...
متن کاملMesoscopic Simulation of Rarefied Gas Flow in Porous Media
The accurate description of flow in nano-scale pores or channels is very important for the reliable design of materials and processes in the areas of MEMS, mesoporous media, and vacuum technologies. Use of classical flow equations fails in this regime since the continuum assumption is not valid. This is due to the fact that the mean free path is comparable to the characteristic dimensions of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vietnam Journal of Mechanics
سال: 2017
ISSN: 0866-7136,0866-7136
DOI: 10.15625/0866-7136/8760